Power Series with Gaps

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On lacunary series with random gaps

We prove Strassen’s law of the iterated logarithm for sums ∑N k=1 f(nkx), where f is a smooth periodic function on the real line and (nk)k≥1 is an increasing random sequence. Our results show that classical results of the theory of lacunary series remain valid for sequences with random gaps, even in the nonharmonic case and if the Hadamard gap condition fails.

متن کامل

Power Series with Integral Coefficients

Let f(z) be a function, meromorphic in \z\ < 1 , whose power series around the origin has integral coefficients. In [5], Salem shows that if there exists a nonzero polynomial p(z) such that p(z)f(z) is in H, or else if there exists a complex number a, such that l/(f(z)—a) is bounded, when |JS| is close to 1, then f(z) is rational. In [2], Chamfy extends Salem's results by showing that if there ...

متن کامل

Regression models for binary time series with gaps

Time series of discrete random variables present unique statistical challenges due to serial correlation and uneven sampling intervals. While regression models for a series of counts are well developed, only few methods are discussed for the analysis of moderate to long (e.g. from 20 to 152 observations) binary or binomial time series. This article suggests generalized linear mixed models with ...

متن کامل

On the Connection between Gaps in Power Series and the Roots of Their Partial Sums

be a power series with the radius of convergence 1. We say that it has Ostrowski gaps p if there exists a pi, such that | an \ < pn for mk á « Û «*. It has infinite Ostrowski gaps p (pp there corresponds a pair of infinite sequences mk and nk (depending on p') with mk<nk and lim nk/mk= « such that | a» | ...

متن کامل

Uniserial modules of generalized power series

Let R be a ring, M a right R-module and (S,≤) a strictly ordered monoid. In this paper we will show that if (S,≤) is a strictly ordered monoid satisfying the condition that 0 ≤ s for all s ∈ S, then the module [[MS,≤]] of generalized power series is a uniserial right [[RS,≤]] ]]-module if and only if M is a simple right R-module and S is a chain monoid.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1960

ISSN: 0002-9939

DOI: 10.2307/2034428